Room-temperature ferromagnetism of 2H-SiC-α-Al2O3 solid solution nanowires and the physical origin.

نویسندگان

  • Yong Sun
  • Cheng Lu
  • Hao Cui
  • Jing Wang
  • Yanming Ma
  • Chengxin Wang
چکیده

In this work we report the first synthesis of 2H-SiC-α-Al2O3 solid solution (SS) nanowires with 2H-SiC as the host phase. The one dimensional (1D) fake binary-system exhibits interesting room-temperature ferromagnetism and spin-glass-like (SGL) behavior. This novel diluted magnetic semiconductor (DMS) was designed on the basis of SiC which is the most promising fundamental semiconductor used in next-generation electronics as the substitute for Si. A systematic investigation of the magnetic properties reveals the origin of the material's room-temperature ferromagnetism and spin-glass behavior. Spin-polarized density functional theory (DFT) calculations reveal that the net moment originates from a strong coupling between atoms around local Si vacancies produced by the SS defect reaction. Unlike random defects derived magnetic behavior, the SS resulted magnetism is significant to be utilized in functional devices since it belongs to a stable crystal structure that is possible to be prepared rationally in a controlled manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic InxGa1 - xN nanowires at room temperature using Cu dopant and annealing

Single-crystal, Cu-doped In x Ga1 - x N nanowires were grown on GaN/Al2O3 substrates via a vapor-liquid-solid (VLS) mechanism using Ni/Au bi-catalysts. The typical diameter of the Cu:In x Ga1 - x N nanowires was 80 to 150 nm, with a typical length of hundreds of micrometers. The as-grown nanowires exhibited diamagnetism. After annealing, the nanowires exhibited ferromagnetism with saturation ma...

متن کامل

Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene.

We show ferromagnetic properties of hydrogen-functionalized epitaxial graphene on SiC. Ferromagnetism in such a material is not directly evident as it is inherently composed of only nonmagnetic constituents. Our results nevertheless show strong ferromagnetism with a saturation of 0.9μ(B)/hexagon projected area, which cannot be explained by simple magnetic impurities. The ferromagnetism is uniqu...

متن کامل

Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2.

Using complementary experiments we show that the room temperature ferromagnetism observed in anatase Co:TiO(2) films is not carrier mediated, but coexists with the dielectric state. TEM and x-ray absorption spectroscopy reveal a solid solution of Co in anatase, where Co is not metallic but in the +2 state substituting for Ti. Measurements at 300 K yield a M(S) of 1.1 mu(B)/Co atom, while all fi...

متن کامل

The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature

In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...

متن کامل

Room Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles

In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 2015